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We introduce a new centrality measure that characterizes the participation of each node in all subgraphs in
a network. Smaller subgraphs are given more weight than larger ones, which makes this measure appropriate
for characterizing network motifs. We show that the subgraph centralityfCSsidg can be obtained mathematically
from the spectra of the adjacency matrix of the network. This measure is better able to discriminate the nodes
of a network than alternate measures such as degree, closeness, betweenness, and eigenvector centralities. We
study eight real-world networks for whichCSsid displays useful and desirable properties, such as clear ranking
of nodes and scale-free characteristics. Compared with the number of links per node, the ranking introduced by
CSsid sfor the nodes in the protein interaction network ofS. cereviciaed is more highly correlated with the
lethality of individual proteins removed from the proteome.

DOI: 10.1103/PhysRevE.71.056103 PACS numberssd: 89.75.Fb, 87.10.1e, 89.20.2a

I. INTRODUCTION

Complex networks, consisting of sets of nodes or vertices
joined together in pairs by links or edges, appear frequently
in various technological, social, and biological scenarios
f1–5g. These networks include the Internetf6g, the World
Wide Webf7g, social networksf8–10g, scientific collabora-
tion networksf11g, lexicon or semantic networksf12,13g,
neural networksf14g, food websf15g, metabolic networks
f16g, and protein-protein interaction networksf17g. They
have been shown to share global statistical features, such as
the “small world” and the “scale-free” effects, as well as the
“clustering” property. The first feature is simply the fact that
the average distance between nodes in the network is short
and usually scales logarithmically with the total number of
nodesf18g. The second is a characteristic of several “real-
world” networks in which there are many nodes with low
degree and only a small number with high degreesthe so-
called “hubs”f19gd. The node degree is simply the number of
ties a node has with other nodes. In scale-free networks, the
node degree follows a power-law distribution. Finally, clus-
tering is a property of two linked nodes that are each linked
to a third nodef7g. In consequence, these three nodes form a
triangle and the clustering is frequently measured by count-
ing the number of triangles in the networkf20g.

It has been observed that not only triangles but also other
subgraphs are significant in real networks. We say that a
graphG8=sV8 ,E8d is a subgraph ofG=sV,Ed if V8#V and
E8#E. The term “network motifs” designates those patterns
that occur in the network far more often than in random
networks with the same degree sequencef21g. Network mo-
tifs found in technological and biological networks are small
subgraphs that capture specific patterns of interconnection
characterizing the networks at the local levelf21,22g.

II. CENTRALITY MEASURES

Another kind of local characterization of networks is
made numerically by using one of several measures known
as “centrality” f23g. One of the most used centrality mea-
sures is the “degree centrality,” DCf7g, which is a funda-
mental quantity describing the topology of scale-free net-
worksf18g. DC can be interpreted as a measure of immediate
influence, as opposed to long-term effect in the networkf23g.
For instance, if a certain proportion of nodes in the network
are infected, those nodes having a direct connection with
them will also be infected. However, although a node in a
network may be linked to only one node, the risk of infection
to the first node remains high if the latter is connected to
many others.

There are several other centrality measures that have been
introduced and studied for real world networks, in particular
for social networks. They account for the different node char-
acteristics that permit them to be ranked in order of impor-
tance in the network. Betweenness centralitysBCd character-
izes how influential a node is in communicating between
node pairsf24g. In other words, BC measures the number of
times that a shortest path between nodesi and j travels
through a nodek whose centrality is being measured. The
farness of a vertex is the sum of the lengths of the geodesics
to every other vertex. The reciprocal of farness is closeness
centrality sCCd. The normalized closeness centrality of a
vertex is the reciprocal of farness divided by the minimum
possible farness expressed as a percentagef7,23g. This mea-
sure is only applicable to connected networks, since the dis-
tance between unconnected nodes is undefined. Neither BC
nor CC can be related to the network subgraphs in a way that
permits them to be considered as measures of node subgraph
centrality.

A centrality measure that is not restricted to shortest paths
is the eigenvector centralitysECd f25g, which is defined as
the principal or dominant eigenvector of the adjacency ma-
trix A representing the connected subgraph or component of
the network. It simulates a mechanism in which each node
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affects all of its neighbors simultaneouslyf26g. EC cannot be
considered as a measure of centrality whereby nodes are
ranked according to their participation in different network
subgraphs. For instance, in a graph with all nodes having the
same degreesa regular graphd, all the components of the
main eigenvalue are identicalf27g, even if they participate in
different subgraphs. EC is better interpreted as a sort of ex-
tended degree centrality which is proportional to the sum of
the centralities of the node’ neighbors. Consequently, a node
has high value of EC either if it is connected to many other
nodes or if it is connected to others that themselves have
high EC f28g.

In Fig. 1, we illustrate two regular graphs, with eight and
nine nodes, and degrees equal to 3 and 6, respectively. In
graphsad, nodesh1,2,8j are the only ones forming part of a
triangle. Verticesh4,6j form part of three squares, vertices
h3,5,7j form part of only two and the rest do not form part of
any. The analysis can be obviously extended to larger sub-
graphs. However, it is evident that there are three groups of
distinguishable vertices in the graph,h1,2,8j, h4,6j, and
h3,5,7j. These are distinguishable according to their partici-
pation in the different subgraphs, although they cannot be
distinguished by EC. In graphsbd, verticesh1,3,5,6,8j take
part in 44 of the 100 squares present in the graph, while
verticesh2,4,7,9j take part in 45sall vertices take part in the
same number of smaller subgraphs; e.g., edges, triangles,
connected triplesd. However, these groups of vertices cannot
be distinguished by any of the centrality measuressDC, CC,
BC, and ECd.

In this work, we propose a method for characterizing
nodes in a network according to the number of closed walks
starting and ending at the node. Closed walks are appropri-
ately weighted such that their influence on the centrality de-
creases as the order of the walk increases. Each closed walk
is associated with a connected subgraph, which means that
this measure counts the times that a node takes part in the
different connected subgraphs of the network, with smaller
subgraphs having higher importance. Consequently, we will
call this measure the “subgraph centrality”sCSd for nodes in
a network.

III. SUBGRAPH CENTRALITY MEASURE

Let G be a simple graph of orderN. The graph spectrum
is formed by the eigenvalues of the adjacency matrix of the
graph. Graph spectral density is the density of the eigenval-
ues of its adjacency matrix, which can be directly related to
the topological features of the graph through the spectral
momentsf29,30g. For instance, the number of closed walks
of lengthk starting and ending on vertexi in the network is
given by the local spectral momentsmksid, which are simply
defined as theith diagonal entry of thekth power of the
adjacency matrix,A,

mksid = sAkdii . s1d

These closed walks are directly related to the subgraphs
of the network. For instance, a closed walk of order three
represents a triangle, closed walks of order four represent,
among others, subgraphs of four nodes. It is worth noting to

comment that even closed walks, i.e., those going back and
forth through an even number of edges, can be trivial. A
trivial closed walk is that describing a subgraph that does not
contain any cycle, i.e., acyclic subgraphs. In Table I we il-
lustrate the closed walks of length fourstwo trivial and one
nontriviald and the subgraphs described by them.

We define the subgraph centrality of the vertexi as the
“sum” of closed walks of different lengths in the network
starting and ending at vertexi. As this sum includes both
trivial and nontrivial closed walks we are considering all
subgraphs, i.e., acyclic and cyclic, respectively. The contri-
bution of these closed walks decreases as the length of the

FIG. 1. Examples of regular graphs with nodes distinguished by
subgraph centrality but not by other centrality measures. All nodes
in graphsad have identical DC, CC, and EC but are distinguished by
BC andCSsid. The numbers of triangles and squares are given as an
ordered pair in parentheses. In graphsbd, all nodes have identical
DC, CC, BC, and EC but are differentiated byCSsid.
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walks increases. That is, shorter closed walks have more in-
fluence on the centrality of the vertex than longer closed
walks. This rule is based on the observation that motifs in
real-world networks are small subgraphs. The extreme case
is that of closed walks of length two only, giving a weight of
zero to longer walks. This case corresponds to the vertex
degree centrality. On the other hand, the use of the sum of
closed walks for defining subgraph centrality presupposes a
mathematical problem as the seriesok=0

` mksid=` diverges.
Consequently, we avoid this problem by scaling the contri-
bution of closed walks to the centrality of the vertex by di-
viding them by the factorial of the order of the spectral mo-
ment. That is, thesubgraph centralityof vertex i in the
network is given by

CSsid = o
k=0

`
mksid

k!
. s2d

Let l be the main eigenvalue ofA. For any non-negative
integerk and anyi P h1,… ,nj , mksidølk, seriess2d, whose
terms are non-negative, converges

o
k=0

`
mksid

k!
ø o

k=0

`
lk

k!
= el. s3d

Thus, the subgraph centrality of any vertexi is bounded
above byCSsidøel. The following result shows that the sub-
graph centrality can be obtained mathematically from the
spectrum of the adjacency matrix of the network.

Theorem: Let G=sV,Ed be a simple graph of order N.
Let v1, v2,… , vN be an orthonormal basis of RN composed
by eigenvectors ofA associated to the eigenvalues
l1, l2,… , lN. Let v j

i denote the ith component ofv j. For all
i PV, the subgraph centrality may be expressed as follows:

CSsid = o
j=1

N

sv j
i d2el j . s4d

Proof: The orthogonal projection of the unit vectorei sthe
ith vector of the canonical base ofRnd on v j is

pjseid =
kei,v jl
iv ji2 v j = kei,v jlv j = v j

iv j . s5d

Hence, the number of closed walks starting at vertexi can
be expressed in terms of the spectral properties of the graph
as follows:

mksid = sAkdii = kAkei,eil =KAko
j=1

N

pjseid,o
j=1

N

pjseidL
=o

j=1

N

l j
ksv j

i d2. s6d

Using expressions2d, we obtain

CSsid = o
k=0

` So
j=1

N
l j

ksv j
i d2

k!
D . s7d

By reordering the terms of seriess7d, we obtain the abso-
lutely convergent series

o
j=1

N Sfv jsidg2o
k=0

`
l j

k

k!
D = o

j=1

N

hfv jsidg2el jj, s8d

which, obviously, also converges toCSsid. Thus, the result
follows.

It has been stated by previous authors that among all
graphs withN nodes, the maximal centrality should be at-
tained by the hub of a starf31g. A star with N nodes, de-
signed asSN, is a tree with one node having degreeN−1 and
the others having degree 1. However, in terms of the number
of times a vertex takes part in network subgraphs, the per-
spective is different. For instance, a vertex in the complete
graphKN takes part in a higher number of subgraphs than the
hub of the starSN sfor Nù3d. The complete graph,KN, is the
graph ofN nodes in which each pair of nodes is connected
by an edge.KN can be decomposed into one subgraph iso-
morphic toSN and sN−1dsN−2d /2 edges, which means that
all subgraphs contained in the starSN are a subclass of the
subgraphs contained in the complete graphKN. Take for in-
stance the simple example ofK5 and S5. Any node ofK5
takes part in six connected triples and two triangles, which
are the only two 3-node connected subgraphs that exist.
However, the central node ofS5 takes part in six connected
triples but each of the other nodes take part in only two and
none of these nodes take part in any triangle, showing that
nodes in the complete graph take part in a higher number of
subgraphs than nodes in the star. In other words, any vertex

TABLE I. Illustration of the relationship between closed walks
strivial and nontriviald of length four and the subgraphs associated
to them.
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of KN takes part in the same number ofsacyclicd subgraphs
in which the hub of the star participates plus in many other
acyclic and cyclic subgraphs. In general, of all connected
graphs withN nodes, the maximal subgraph centrality is at-
tained by the vertices of the complete graph.

Proposition: Let G be a simple and connected graph
of order N.1. Then for every vertex i, CSsidø s1/NdheN−1

+fsN−1d /egj. The equality holds if and only if G is the com-
plete graph KN.

Proof: SinceG is nontrivial, let x be an edge ofG. Let
G−x be the graph obtained by removingx from G. Then the
number of closed walks of lengthk in G−x is equal to the
number of closed walks of lengthk in G minus the number
of closed walks of lengthk in G containingx. Consequently,
for all i , CSsid in G−x is lower than or equal toCSsid in G. In
closing, the maximumCSsid is attained if and only ifG is the
complete graphKN.

We now computeCSsid in KN. The eigenvalues of
KN are N−1 and −1 swith multiplicity N−1d. Let v1
=s1/ÎN,… ,1 /ÎNd , v2,… , vN be an orthonormal basis of
RN composed of eigenvectors ofKN, wherev1 is the eigen-
vector associated withN−1. Thus, by spectral decomposition
of unit vector ei =s1/ÎNdv1+o j=2

N v j
iv j, we obtain 1=ieii2

=s1/Nd+o j=2
N sv j

i d2. Therefore, we deduce

mksid
k!

=
kAkei,eil

k!
=

1

n
S sN − 1dk

k!
+ sN − 1d

s− 1dk

k!
D . s9d

Hence,CSsid=s1/NdheN−1+fsN−1d/egj.

IV. APPLICATIONS TO ARTIFICIAL NETWORKS

In this section, we present several tests of our centrality
measure in “artificial” regular graphs, and we compare it
with other centrality measures. We selected regular graphs as
a challenging set of graphs because their nodes have identi-
cal DC and EC. Graphsad in Fig. 1 also has identical CC for
all nodes snormalized CC=63.636d. However, nodes are
grouped into the following three different groups according
to BC: h1,2,8j BC=9.529, h3,5,7j BC=11.111, andh4,6j
BC=7.143. The same clustering is obtained byCSsid but fol-
lows a different order:h1,2,8j CSsid=3.902, h3,5,7j, CSsid
=3.638, andh4,6j CSsid=3.705. This order is expected in
accordance with the number of times each node takes part in
the small subgraphs, e.g., triangles and squares, as given in
Fig. 1.

Graph sbd in Fig. 1 represents a more challenging ex-
ample, as it has identical DC, CC, EC, and BC for all nodes
of the graph, and every node participates in the same number
of triangles. However,CSsid is able to differentiate nodes
h1,3,5,6,8j sCSsid=45.651d from nodes h2,4,7,9j CSsid
=45.696 following the trend marked by the number of
squares in which every node participates; i.e., 44 for nodes in
the first group and 45 for nodes in the second. Despite this
difference is of only one, it clearly indicates that both groups
of nodes are different with respect to their participation in the
subgraphs. The difference in the number of other subgraphs
snot calculatedd could be greater for both graphs, but our

objective is to show that different groups of nodessaccording
to their participation in subgraphsd are differentiated by
CSsid, which is clearly observed for the examples given be-
low.

We have calculatedCSsid for 210 regular graphs. The
number of vertices in the graphs ranged from 6 to 10, and the
degrees of the vertices ranged from 3 to 7. In all these cases,
we have found that for graphs whose nodes all have identical
CSsid, all nodes also have identical values of DC, BC, CC,
and EC. However, we have found several examples in which
CSsid differentiates nodes even when the other centrality
measures are identical. In other words, we have empirically
observed that of all centrality measures tested,CSsid had the
greatest discriminative power. These characteristics are inde-
pendent of the size of the graph analyzed and they are
straightforwardly generalized for larger regular networks.
However, we have not been able to prove this result math-
ematically for the general case and we propose it in the form
of a conjecture.

Conjecture: Let G be a graph having identical subgraph
centrality for all nodes. Then the degree, closeness, eigen-
vector, and betweenness centralities are also identical for all
nodes.

V. APPLICATIONS TO REAL-WORLD NETWORKS

We explored the characteristics of our network subgraph
centrality in several kinds of real-world networks, including
sid and sii d two protein-protein interaction networkssPINsd,
one of the yeastSaccharomyces cerevisiaesPIN-1d compiled
by Bu et al. f32g on data obtained by von Meringet al. f33g
by assessing a total of 80 000 interactions among 5400 pro-
teins assigning each interaction a confidence value. Buet al.
f32g focused on 11 855 interactions between 2617 proteins
with high and medium confidence in order to reduce the
influence of false positives. The PIN of the bacteriumHeli-
cobacter pylorisPIN-2d obtained from the Database of Inter-
acting Proteinsf34g; siii d and sivd two vocabulary networks
in which nodes represent words taken from a dictionary. A
directed link from a word to another exists if the first word is
used in the definition of the second one. One of these net-
works is built using the Roget’s Thesaurus of EnglishsRo-
getd f35g, and the other is built using the Online Dictionary
of Library and Information SciencesODLISd f36g; svd a sci-
entific collaboration network in the field of computational
geometry compiled from the Computational Geometry Data-
base, version of February 2002f37g where nodes represent
scientists, and two nodes are connected if the corresponding
authors wrote a paper together;svid a citation network of
papers published in the Proceedings of Graph Drawing in the
period 1994–2000f38g where nodes are papers and two
nodes are connected if one paper cites another;svii d and
sviii d the Internet at the autonomous systemssASd level as of
September 1997 and of April 1998 analyzed by Faloutsoset
al. f6g. Although some of these relationships are inherently
directed, we have ignored direction and consider networks to
be undirected for the current analysis. On the other hand, in
order to make appropriate comparisons betweenCSsid and
the other centrality measures, we studied only the main com-
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ponent of these networks owing to the fact that some of the
centrality measures cannot be defined for nonconnected
graphs. Datasets were collected from the European Project
COSIN shttp://www.cosin.org/d and from Pajek program
datasetsshttp://vlado.fmf.uni-lj.si/pub/networks/data/d.

VI. COMPARISON TO OTHER CENTRALITY MEASURES

It has been previously shown that strong correlations exist
among different centrality measuresf39g. This is not surpris-
ing because these measures are defined so as to account for
the notion of centrality of the nodes in the graph. For in-
stance, nodes with large degrees show in general short aver-
age distance to the other nodes in the network, which pro-
duces high correlations between node degrees and various
measures of centrality. Nodes with large degrees are also
expected to participate in large amounts of subgraphs, such
as simply connected triplets, triangles, squares, and so forth.
Consequently, we have observed that, in general, subgraph
centrality yields the highest rank orders for those nodes of
largest degrees in the network, despite the fact that both mea-
sures disagree very significantly for the majority of other
nodessgraphics not shownd. In the next section, we will ana-
lyze the ranking of nodes in more detail.

A global characterization of the network can be carried
out by mean of the average subgraph centrality,kCSl. It has
been recommended that the use of centralization instead of
centrality is more appropriate for these sort of global mea-
suresf8g. An analytical expression forkCSl can be obtained
using a procedure analogous to that described for proving the
previous theorem, showing thatkCSl depends only on the
eigenvalues and size of the adjacency matrix of the network,

kCSl =
1

N
o
i=1

N

CSsid =
1

N
o
i=1

N

eli . s10d

In Table II we give the values ofkCSl as well as the other
centralization measures, i.e., average degreekDCl, average
betweennesskBCl, average closenesskCCl, and average EC
kECl, as well as the average clustering coefficient for the

whole network, C. We also give the squared correlation co-
efficients, R2, for the linear regression between the corre-
sponding centralization measure andkCSl. As we can see in
Table II kSCl is not linearly related to any of the other cen-
tralization measuressR2,0.5d. The only significant relation
is obtained betweenkDCl and kSCl, which indicates that as
an average the nodes with larger degrees in the network are
also those which participates in a higher number of sub-
graphs.

VII. RANKING OF NODES

One of the most distinctive characteristics of centrality
measures is their ability to rank nodes in a network accord-
ing to the topological features that they account for. It is
clear that DC takes into account the immediate effect that the
closest nodes produce on the corresponding vertex. OurCSsid
measure takes into account not only the immediate effects of
the closest nodes but also the long-range effects “transmit-
ted” through the participation of a node in all subgraphs
existing in the network, giving more weights to shorter sub-
graphs. Despite these differences, there were several cases in
which the ranking of the most central nodes in a network
showed great resemblance in both measures. For instance, in
the top-10 rankings produced by DC andCSsid of the words
in the Roget Thesaurus of English, there are seven words that
coincide. Eight words in the ODLIS network, seven authors
in the Computational Geometry collaboration network and
seven nodes in Internet-1997 also coincide for both rankings.
In the PIN-1 the number of proteins that coincide in the
top-10 rankings is only two, and in PIN-2 there are five. In
spite of these coincidences, the exact ranking of the most
central nodes differs in order. While “indication” and “dete-
rioration” are the most connected words in Roget, “inutility”
and “neglect” are the most central according toCSsid. Guibas
is the most connected author in the collaboration network of
Computational Geometry with 102 coauthors and Agarwal is
the second with 98 coauthors. However, Agarwal is ranked
as the most central author according toCSsid, while Guibas is
second. This situation is repeated several times in most of the
networks analyzed.

TABLE II. Summary of results of eight real-world complex networks.a

Network Nodes Links kDCl kBCl kCCl kECl C kCSl

PIN-1 2224 6608 5.94 3752.7 23.3 0.0078 0.200 87269.5

PIN-2 710 1396 3.93 1117.5 24.5 0.0219 0.025 64.7

Roget 994 3640 7.32 1526.9 24.9 0.0209 0.162 239.4

ODLIS 2898 16376 11.30 3142.9 32.1 0.0107 0.351 5.331015

Geom 3621 9461 5.22 7811.2 19.5 0.0047 0.679 1.13109

GD 249 635 5.10 390.6 24.8 0.0378 0.287 64.3

Int-97 3015 5156 3.42 4161.6 27.3 0.0082 0.348 2.0531010

Int-98 3522 6324 3.59 4870.8 27.3 0.0076 0.340 4.0431011

R2 0.748 0.001 0.543 0.023 0.012

aDC, degree centrality; CC, normalized closeness centrality; BC, betweenness centrality; EC, eigenvector centrality;CS, subgraph centrality;
C, Watts-Strogatz clustering coefficientf14g, k¯l symbol is used for average values for all nodes of the network.R2 is the square correlation
coefficient of the linear regression between the corresponding centrality measure andkCSl.
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In order to understand the main differences in the orders
imposed by these two centrality measures, we have selected
an example from the collaboration network of Computational
Geometry authors. We selected at random two authors with
the same degree and different subgraph centralityssee Fig.
2d: Chan and Abrams, both having DC=10, but having
CSsid=8.093109 and CSsid=974.47, respectively. Despite
both authors’ having the same number of coauthors, Chan is
connected to five of the hubs of this collaboration network:
Agarwals98d, Snoeyinks91d, Sharirs87d, Tamassias79d, and
Yap s76d sDC are given in parenthesesd. However, Abrams is
connected to authors having lower numbers of co-workers;
e.g., Patrikalakis has 31 coauthors and the rest have only five
to 16 collaborators. This simple difference means that Chan
is separated from 623 other authors by a distance of only
two; i.e., simply connected triplets, while this number is sig-
nificantly lower for Abrams, i.e., only 116. The risk that
Chan is “infected” with an idea circulating among the au-
thors in this field of research is much higher than the risk
with Abrams. This difference is accounted for the subgraph
centrality.

A similar analysis can be realized for nodes having degree
one in a network. According to DC, these are the less central
nodes of the network. However, we can rank them byCSsid
to see whether one is more or less central. Of all the words in
the Roget Thesaurus with degree one, “mart” is ranked by
CSsid as the most central and “sensualist” as the least central.

While “mart” is connected to “store,” a hub connected to 20
other words, “sensualist” is only connected to “libertine,”
which is connected only to “impurity,” a word linked only to
two other words, “purity” and “uncleanness.”

VIII. SUBGRAPH CENTRALITY AND PROTEIN
LETHALITY

In order to investigate the consequences of the differences
in the ranking of nodes in real-life scenarios, we have se-
lected the lethality of proteins inS. cereviciaesPIN-1d. Jeong
et al. f40g have shown that the likelihood that removal of a
protein from the yeast proteome will prove lethal correlates
with the number of interactions that the protein has; i.e., its
node degree. We first ranked all proteins in PIN-1 according
to both DC andCSsid, and then counted the cumulative num-
ber of lethal proteins in the firstn proteins of the ranking,
with an increasing step of 10. For instance, we counted the
number of lethal proteins in the first 10 proteins in each
ranking, then in the first 20, and so forth. In Fig. 3, we give
the general trends for the first 300 proteins in both rankings
based on DC andCSsid. It can be seen that the ranking intro-
duced byCSsid contains more essential proteins than that
introduced by the number of interactions that a protein has.
For the first 300 proteins, for example, the number of essen-
tial proteins according toCSsid is 148, while according to DC
it is only 135.

In order to understand these differences, we must first
investigate which topological features determine the differ-
ences in the ranking of proteins according to each centrality
measure. The most central proteins according to DC are
YPR110C and YIL035C, which are transcription proteins,
both with 64 interactions. According toCSsid, the most cen-
tral protein is the transcription protein YNL061W, which has
only 48 interactions. However, YNL061W participates in
162 triangles, while the most connected proteinssYPR110C
and YIL035Cd participate in 52 and 120 triangles, respec-
tively. If we consider the top 10 proteins according toCSsid,

FIG. 2. Subgraphs of the collaboration network in Computa-
tional Geometry for two author with the same degree centrality but
different subgraph centrality, Chan and Abrams and all their
co-workers.

FIG. 3. The number of essential proteins in the PIN ofS. cer-
eviciaeaccording to the ranking of nodes produced by DCsredd and
CSsid sblued.
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the average number of triangles in which each protein par-
ticipates is 127, while this average is only 57 for the top 10
proteins in the DC ranking. Our centrality measure takes into
account not only the number of triangles but also the number
of simply connected triplets, the number of squares, and
other subgraphs in which a node participates. These sub-
graphs, particularly triangles and squares, can play an impor-
tant role in understanding the evolution of the protein-protein

interaction network f21,22g. According to the coupled
duplication-divergence model of evolution after gene dupli-
cation, both of the expressed proteins will have the same
interactionsf41g. In this model, it is proposed that both du-
plicate genes are subject to degenerative mutations, losing
some functions but jointly retaining the full set of functions
present in the ancestral gene. More recently, van Noortet al.
f42g have reproduced the scale-free and small-world charac-

FIG. 4. Linear-log plot of the cumulative distribution ofCSsid sleftd and DCsrightd in eight complex networks.
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teristics of the yeast coexpression network using a similar
model, based on the simple neutralist’s model, which con-
sists of coduplication of genes with their transcription factor
binding sitessTFBSsd, deletion and duplication of individual
TFBSs, and gene lossf42g. Among the effects manifested by
these models on the topology of the PIN is the tendency to
generate biconnected triplets and quadruples of nodes; i.e.,
triangles and squares. Triangles are formed among the dupli-
cating genes and any neighbor of the parent gene, and
squares are formed analogously between duplicating genes
and any pair of neighbors of the parent gene. These structural
features characterizing the topology of the PINs are appro-
priately measured by the subgraph centrality, which counts
the number of weighted subgraphs in which a node of the
network participates, giving higher weights to smaller sub-
graphs. We therefore conclude that our finding concerning
the centrality–lethality relation in the yeast PIN is a conse-
quence of the fact that indispensability of a given protein in
the PIN is more a consequence of its imbrications in certain
structural motifs, such as triangles and squares, than of its
connectivity.

IX. SCALING PROPERTIES

In a general classification of small-world networks, Ama-
ral et al. f43g have presented empirical evidence for the oc-
currence of three structural classes. According to the cumu-
lative distribution of vertex degrees, they foundsid scale-free
networks, characterized by a connectivity distribution with a
tail that decays as a power law;sii d truncated scale-free net-
works, characterized by a connectivity distribution that has a
power-law regime followed by a sharp cutoff of the tail; and
siii d single-scale networks, characterized by a connectivity
distribution with a fast decaying tail. Power-law distributions
have also been observed for the betweenness centrality in
several types of network, which have been used to classify
scale-free networksf44g.

In the following, we use cumulative rather than density
distribution of both DC andCSsid, based on the work of
Amaral et al. f43g and other evidence for its advantages in
small, noisy data setsf39g. All eight networks studied dis-
played a cumulative subgraph centrality distribution that cor-
responded with scale-free characteristics. In Fig. 4, we illus-
trate the linear-log plots of the cumulative distributions of
CSsid sleftd and DC srightd for the eight networks. Interest-
ingly, the PIN of S. cereviciaedoes not display scale-free
degree distribution but rather corresponds with a broad-scale
network, in which a power-law regime is followed by a large
tail that decays according to an exponential or Gaussian law.
We have investigated this distribution in detail for this net-

work and observed a power-law distribution for the region of
lower degree, with a squared correlation coefficient greater
than 0.98. Similar behavior was found by Amaralet al. for
the movie actor network, first reported as scale freef19g and
then later found to display truncated scale-free characteris-
tics. Recently, Newman has reported that three bibliographic
networks in the fields of biology, physics, and mathematics
do not follow power laws, but probably display broad-scale
behaviorf45g.

The vocabulary network of the Roget Thesaurus and the
citation network of Graph Drawing Proceedings are both
single-scale networks following a connectivity distribution
with an exponential or Gaussian decaying tail. However,
they both show clear scale-free subgraph centrality distribu-
tions. The scale-free characteristics of theCSsid distribution
can be explained as follows.CSsid measures the number of
times a node participates in all subgraphs in the network,
giving more weight to smaller subgraphs. Consequently,
nodes with highCSsid participate in a high number of small
subgraphs, such as connected triplets, triangles, squares, etc.
The frequency of these nodes in the network is significantly
lower than that of nodes participating in a small number of
subgraphs or participating only in large subgraphs from
which a fat tail distribution results. These scale-free behav-
iors of theCSsid distribution are not expected to be univer-
sally followed for all kinds of network. In fact, we have
found exponential decay distributions forCSsid in some net-
works, such as food webs.

X. CONCLUSIONS

We have proposed a centrality measure for the nodes of a
network, based on spectral properties, which shows interest-
ing and desirable properties. It characterizes nodes according
to their participation in structural subgraphs in the network,
giving higher weights to the smaller subgraphs that can be
involved in network motifs. This centrality has been tested in
artificial networks, showing that it is more discriminative
than degree, betweenness, closeness or eigenvector centrality
for the nodes of a network. In real-world complex networks,
the subgraph centrality does not show strong correlation with
other centrality measures, and it gives a distinctly different
ranking of nodes. In the networks studied here, subgraph
centrality displays a power-law distribution even in cases in
which degree centrality does not display a scale-free distri-
bution.
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